A Method Probing High‐Temperature Oxidation Behavior of Crystalline Materials

Author:

Zhang Zhengang1ORCID,Wu Jisen1,Zhu Quan23,Ma Jianyi12ORCID

Affiliation:

1. Institute of Atomic and Molecular Physics Sichuan University Chengdu 610065 China

2. School of Chemical Engineering Sichuan University Chengdu 610065 China

3. Engineering Research Center of Combustion and Cooling for Aerospace Power Ministry of Education Sichuan University Chengdu Sichuan 610065 China

Abstract

AbstractTo date, the oxidation behavior of crystal materials is not fully understood; additional research is needed to understand the oxidation of materials. Herein, density functional theory (DFT) calculations and a 3D kinetic Monte Carlo (KMC) model are used to investigate the infiltration and diffusion behaviors of oxygen atoms within the crystal. Oxygen molecules readily adsorbes on crystal surfaces of the material and rapidly dissociates, verified by both first‐principles calculations and energy‐dispersive spectrometer (EDS) results. The infiltration ability of oxygen atoms into the inner crystal layers is affected by the surrounding oxygen atom, lattice compactness, and other factors. Energy‐barrier calculations show that crystal thin/dense layers have significant effects on the crystal oxidation process, so high‐pressure technology is used to investigate this correlation experimentally. KMC calculations and thermogravimetric analyses (TGA) show the infiltration behavior of oxygen atoms in the main crystal plane (211) toward the inner layers has the highest proportion to the actual high‐temperature oxidation behavior of the title material. The results of both the KMC calculations and thermal experiments show the material peeled off upon further oxidation, which accelerates oxidation. At the same time, high‐pressure treatment increases the oxidation resistance of materials at lower temperatures (<600 °C).

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3