Affiliation:
1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract
This paper investigates the effect of graphene oxide (GO) particles on the friction reduction and wear resistance of coatings on a Ti-6Al-4V alloy generated using the micro-arc oxidation (MAO) technique. Different concentrations of GO were added in aluminate–phosphate electrolyte. The composition of the MAO coatings was investigated using X-ray diffraction and the energy dispersive spectrum. Measurements of the coating’s thickness, hardness, and roughness have also been conducted. Ball-on-disk friction tests under dry conditions were carried out to reveal the tribological behavior of the MAO coating. The results showed that the coating consisted of Al2TiO5 and γ-Al2O3. The addition of GO greatly reduced the friction coefficient by 25%. The coating with 5 g/L of GO particles exhibited the lowest friction coefficient (reduced from 0.47 to 0.35). Moreover, the coating thickness become thicker (from 10 to 20 μm) with an increase in GO concentration from 0 to 10 g/L. The wear mechanism was revealed via worn surface analysis. This study provides a helpful way to improve the surface wear resistance of titanium alloys.
Funder
National Natural Science Foundation of China
Priority Academic Program Development of Jiangsu Higher Education Institutions
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献