Investigation of the Microstructure and Wear Properties of Conventional Laser Cladding and Ultra-High-Speed Laser Cladding Alloy Coatings for Wheel Materials

Author:

Xiao Qian12,Xia Jinlong12,Gao Xueshan12,Yang Wenbin123,Chen Daoyun12,Ding Haohao4ORCID,Wang Yao2

Affiliation:

1. Key Laboratory of Railway Industry on Intelligent Operation and Maintenance for Locomotive and Vehicle, East China Jiaotong University, Nanchang 330013, China

2. Key Laboratory of Conveyance Equipment, Ministry of Education, East China Jiaotong University, Nanchang 330013, China

3. Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Zhejiang Normal University, Jinhua 321005, China

4. Tribology Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China

Abstract

In this paper, Fe-based and Co-based alloy powders were chosen to perform laser cladding on wheel materials through conventional laser cladding (CLC) and ultra-high-speed laser cladding (UHSLC) processes, respectively. The microstructures, element distribution, phase composition and hardness of the Fe-based alloy and Co-based alloy coating layers using the CLC and UHSLC processes were compared and analysed. The results show that the CLC and UHSLC alloy coatings were dense and free of defects such as pores and cracks. Compared with the CLC alloy coating, the grain size of the UHSLC alloy coating was smaller, the coating composition was close to the powder design composition, and the distribution of Cr within and between the grains was more uniform. The Fe-based coating was mainly composed of (Fe, Ni) and Cr7C3, and the Co-based coating was mainly composed of γ-Co and Cr23C6. It was found that the cooling rate of the CLC alloy coating was smaller than that of the USHLC, and the hardness of the CLC alloy coating was less than that of the USHLC. The average hardness of the UHSLC Fe-based and Co-based alloy coatings was 709 HV and 525 HV, respectively. The average hardness of the CLC Fe-based and Co-based alloy coatings was 615 HV and 493 HV, respectively. The rolling friction and wear tests were carried out with the CLC-treated and UHSLC-treated wheel specimens on the GPM-30 rolling contact fatigue testing machine. The results showed that the wear rate of the UHSLC alloy coating on the wheel specimens was significantly lower than that of the CLC alloy coating on the wheel specimens. The wear rates of the UHSLC Fe-based and Co-based alloy coatings on the wheel specimens were reduced by 40.7% and 73.8%, respectively. It was demonstrated that the wear resistance of the USHLC alloy coatings was better than those of the CLC alloy coatings. The CLC alloy coating exhibited more severe fatigue damage with small cracks. Furthermore, the damage of the UHSLC alloy coating was relatively minor, with slight spalling. The Co-based alloy coating exhibited superior wear properties with the same laser cladding process.

Funder

National Natural Science Foundation of China

State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure

Open Project of Key Laboratory of Conveyance Equipment (East China Jiaotong University), Ministry of Education

Research on key Technologies for laser cladding Repair of Railway Wheels and Rails

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3