Oligonucleotide Detection and Optical Measurement with Graphene Oxide in the Presence of Bovine Serum Albumin Enabled by Use of Surfactants and Salts

Author:

Nitu Florentin R.,Burns Jorge S.ORCID,Ionită Mariana

Abstract

As graphene oxide-based oligonucleotide biosensors improve, there is a growing need to explore their ability to retain high sensitivity for low target concentrations in the context of biological fluids. Therefore, we innovatively combined assay milieu factors that could influence the key performance parameters of DNA hybridization and graphene oxide (GO) colloid dispersion, verifying their suitability to enhance oligonucleotide–GO interactions and biosensor performance. As a model system, we tested single-strand (ss) DNA detection in a complex solution containing bovine serum albumin (BSA) and salts with surfactants. A fluorescein conjugated 30-mer oligonucleotide ssDNA probe was combined with its complementary cDNA target, together with solute dispersed GO and either non-ionic (Triton X-100 and Tween-20) or anionic sodium dodecyl sulfate (SDS) surfactants. In this context, we compared the effect of divalent Mg2+ or monovalent Na+ salts on GO binding for the quench-based detection of specific target–probe DNA hybridization. GO biosensor strategies for quench-based DNA detection include a “turn on” enhancement of fluorescence upon target–probe interaction versus a “turn off” decreased fluorescence for the GO-bound probe. We found that the sensitive and specific detection of low concentrations of oligonucleotide target was best achieved using a strategy that involved target–probe DNA hybridization in the solution with a subsequent modified “turn-off” GO capture and the quenching of the unhybridized probe. Using carefully formulated assay procedures that prevented GO aggregation, the preferential binding and quenching of the unhybridized probe were both achieved using 0.1% BSA, 0.065% SDS and 6 mM NaCl. This resulted in the sensitive measurement of the specific target–probe complexes remaining in the solution. The fluorescein-conjugated single stranded probe (FAM–ssDNA) exhibited linearity to cDNA hybridization with concentrations in the range of 1–8 nM, with a limit of detection equivalent to 0.1 pmoles of target in 100 µL of assay mix. We highlight a general approach that may be adopted for oligonucleotide target detection within complex solutions.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3