Label-Free Homogeneous microRNA Detection in Cell Culture Medium Based on Graphene Oxide and Specific Fluorescence Quenching

Author:

Nitu Florentin R.,Savu Lorand,Muraru Sorin,Stoian Ioan,Ionită Mariana

Abstract

Label-free homogeneous optical detection of low concentration of oligonucleotides using graphene oxide in complex solutions containing proteins remains difficult. We used a colloidal graphene oxide (GO) as a fluorescent probe quencher to detect microRNA-21 spiked-in cell culture medium, overcoming previously reported problematic aspects of protein interference with graphene oxide. We used a “turn off” assay for specific quenching-based detection of oligo DNA-microRNA hybridization in solution. A fluorescein conjugated 30-mer single-stranded DNA (ssDNA) probe was combined with a complementary synthetic microRNA (18 nucleotides) target. The probe-target hybridization was detected by specific quenching due to photoinduced electron transfer (PET). On the next step, GO captures and quenches the unhybridized probe by fluorescence resonance energy transfer (FRET) in the presence of cell culture medium supplemented with platelet lysate, 0.1% sodium dodecyl sulfate (SDS), 0.1% Triton X-100 and 50% formamide. This resulted in sensitive measurement of the specific probe-target complexes remaining in solution. The detection is linear in the range of 1 nM and 8 nM in a single 100 μL total volume assay sample containing 25% cell culture medium supplemented with platelet lysate. We highlight a general approach that may be adopted for microRNA target detection within complex physiological media.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3