microRNA Detection via Nanostructured Biochips for Early Cancer Diagnostics

Author:

Martino Sara12,Tammaro Chiara1,Misso Gabriella1ORCID,Falco Michela13ORCID,Scrima Marianna3ORCID,Bocchetti Marco13ORCID,Rea Ilaria2ORCID,De Stefano Luca2ORCID,Caraglia Michele13ORCID

Affiliation:

1. Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy

2. Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80138 Naples, Italy

3. Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy

Abstract

MicroRNA (miRNA) are constituted of approximately 22 nucleotides and play an important role in the regulation of many physiological functions and diseases. In the last 10 years, an increasing interest has been recorded in studying the expression profile of miRNAs in cancer. Real time-quantitative polymerase chain reaction (RT-qPCR), microarrays, and small RNA sequencing represent the gold standard techniques used in the last 30 years as detection methods. The advent of nanotechnology has allowed the fabrication of nanostructured biosensors which are widely exploited in the diagnostic field. Nanostructured biosensors offer many advantages: (i) their small size allows the construction of portable, wearable, and low-cost products; (ii) the large surface–volume ratio enables the loading of a great number of biorecognition elements (e.g., probes, receptors); and (iii) direct contact of the recognition element with the analyte increases the sensitivity and specificity inducing low limits of detection (LOD). In this review, the role of nanostructured biosensors in miRNA detection is explored, focusing on electrochemical and optical sensing. In particular, four types of nanomaterials (metallic nanoparticles, graphene oxide, quantum dots, and nanostructured polymers) are reported for both detection strategies with the aim to show their distinct properties and applications.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3