Edible Films Based on Black Chia (Salvia hispanica L.) Seed Mucilage Containing Rhus microphylla Fruit Phenolic Extract

Author:

Charles-Rodríguez Ana V.,Rivera-Solís Luz L.,Martins Joana T.,Genisheva ZlatinaORCID,Robledo-Olivo ArmandoORCID,González-Morales SusanaORCID,López-Guarin Gustavo,Martínez-Vázquez Dolores G.,Vicente António A.ORCID,Flores-López María L.ORCID

Abstract

Functional films based on black chia (Salvia hispanica L.) seed mucilage (BCm) containing Rhus microphylla (Rm) fruit phenolic extract were built and characterized. A hydro-alcohol extract (HAE) of Rm was incorporated as the bioactive agent due to its noteworthy phenolic profile, and good antioxidant and antifungal activities. The effects of the BCm concentration (0.2% and 0.4%, w/v), HAE incorporation, and their interaction with glycerol (1.0%, w/v) and calcium chloride (0.05%, w/v) on the films’ physicochemical properties were evaluated. The filmogenic solutions successfully fitted to the Herschel–Bulkley model (R2 < 0.999), exhibiting a pseudoplastic and shear thinning character, typical of polymer solutions. Interestingly, their rheological properties were not (p > 0.05) changed by the HAE addition, but their surface tension was enhanced (p < 0.05), which could favor their coating ability. The polyanionic nature of the systems (zeta potential-Zp values from −26.9 to −33.3 mV) allowed them to interact with Ca2+ cations, thus forming stable and resistant films. All the films showed low water solubility (15.0% to 22.3%) and high permeability (3.7 to 4.0 × 10−10 g m−1 s−1 Pa−1), as well as high biodegradability (moisture content from 66.0% to 80.9%); although the moisture content was reduced (p < 0.05) with HAE addition. The combination of higher BCm ratio and HAE addition (BCm0.4+Rm) led to a more resistant, thick, opaque, and dark film compared with the others obtained. This study reveals the BCm-based films’ potential, highlighting those with HAE, representing a novel alternative to improve the quality of food products.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3