Controlling Bowing and Narrowing in SiO2 Contact-Hole Etch Profiles Using Heptafluoropropyl Methyl Ether as an Etchant with Low Global Warming Potential

Author:

You Sanghyun1ORCID,Yang Hyun Seok1,Jeon Dongjun1,Chae Heeyeop2,Kim Chang-Koo1ORCID

Affiliation:

1. Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea

2. SKKU Advanced Institute of Nanotechnology (SAINT) and School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea

Abstract

Heptafluoropropyl methyl ether (HFE-347mcc3), as a lower-GWP (global warming potential) alternative to PFCs (perfluorocarbons), was used to etch SiO2 contact holes. The etch profiles of the SiO2 contact holes in HFE-347mcc3/O2/Ar plasmas showed more bowing at lower flow rate ratios of HFE-347mcc3 to Ar, whereas more narrowing occurred at higher ratios. The measurements of the angular dependences of the deposition rates of fluorocarbon films on the surface of SiO2 and the etch rates of SiO2 showed that the shape evolution of contact-hole etch profiles at different HFE-347mcc3/Ar ratios was attributed to an increase in etch resistance and a decrease in etch ability of the sidewalls of the contact hole with the increasing HFE-347mcc3/Ar ratio. This resulted in determining the optimum ratio of HFE-347mcc3 to Ar to achieve the maximum anisotropy of the contact hole etched in HFE-347mcc3/O2/Ar plasmas. By carefully selecting the specific flow rates of HFE-347mcc3/O2/Ar (9/2/19 sccm), a highly anisotropic and bowing-free SiO2 contact hole, with a 100 nm diameter and an aspect ratio of 24, was successfully achieved.

Funder

National Research Foundation of Korea

Korea Evaluation Institute of Industrial Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3