Design and Optimization of the Antireflective Coating Properties of Silicon Solar Cells by Using Response Surface Methodology

Author:

Makableh Yahia F.ORCID,Alzubi Hani,Tashtoush GhassanORCID

Abstract

The design and optimization of a nanostructured antireflective coatings for Si solar cells were performed by using response surface methodology (RSM). RSM was employed to investigate the effect on the overall optical performance of silicon solar cells coated with three different nanoparticle materials of titanium dioxide, aluminum oxide, and zinc oxide nanostructures. Central composite design was used for the optimization of the reflectance process and to study the main effects and interactions between the three process variables: nanomaterial type, the radius of nanoparticles, and wavelength of visible light. In this theoretical study, COMSOL Multiphysics was utilized to design the structures by using the wave optics module. The optical properties of the solar cell’s substrate and the three different nanomaterial types were studied. The results indicated that ZnO nanoparticles were the best antireflective coating candidate for Si, as the ZnO nanoparticles produced the lowest reflection values among the three nanomaterial types. The study reveals that the optimum conditions to reach minimum surface reflections for silicon solar cell were established by using ZnO nanoparticles with a radius of ~38 nm. On average, the reflectance reached ~5.5% along the visible spectral range, and approximately zero reflectance in the 550–600 nm range.

Funder

Deanship of Research, Jordan University of Science and Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3