Competitive Mechanism of Alloying Elements on the Physical Properties of Al10Ti15Nix1Crx2Cox3 Alloys through Single-Element and Multi-Element Analysis Methods

Author:

Liu Yu12,Wang Lijun1,Zhao Juangang1,Wang Zhipeng3,Zhang Ruizhi1,Wu Yuanzhi1,Fan Touwen1,Tang Pingying4

Affiliation:

1. Research Institute of Automobile Parts Technology, Hunan Institute of Technology, Hengyang 421002, China

2. College of Materials Science and Engineering, Hunan University, Changsha 410082, China

3. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China

4. Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning 530023, China

Abstract

Altering the content of an alloying element in alloy materials will inevitably affect the content of other elements, while the effect is frequently disregarded, leading to subsequent negligence of the common influence on the physical properties of alloys. Therefore, the correlation between alloying elements and physical properties has not been adequately addressed in the existing studies. In response to this problem, the present study focuses on the Al10Ti15Nix1Crx2Cox3 alloys and investigates the competitive interplay among Ni, Cr, and Co elements in the formation of physical properties through a single-element (SE) analysis and a multi-element (ME) analysis based on the first principles calculations and the partial least squares (PLS) regression. The values of C11 and C44 generally increase with the incorporation of Ni or Cr content in light of SE analysis, which is contrary to the inclination of ME analysis in predicting the impact of Ni and Cr elements, and the Ni element demonstrates a pronounced negative competitive ability. The overall competitive relationship among the three alloying elements suggests that increasing the content of Ni and Cr does not contribute to enhancing the elastic constants of alloys, and the phenomenon is also observed in the analysis of elastic moduli. The reason is that the SE analysis fails to account for the aforementioned common influence of multiple alloying elements on the physical properties of alloys. Therefore, the integration of SE analysis and ME analysis is more advantageous in elucidating the hidden competitive mechanism among multiple alloying elements, and offering a more robust theoretical framework for the design of alloy materials.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Scientific Research Fund of Hunan Provincial Education Department

Changsha Municipal Natural Science Foundation

Technological Innovation Projects of Hengyang

Scientific Research Project of Hunan Institute of Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3