Turbulence Intensity Characteristics of a Magnetoliquid Seal Interface in a Liquid Environment

Author:

Li Wangxu,Li Zhenggui,Wang Ziyue,Wu Feng,Xu Lianchen,Peng Shengyang

Abstract

In a liquid environment, the turbulence intensity of the interfacial layer between the magnetic and sealing medium fluids in magnetic liquid seals directly affects the layer stability. Reducing the maximum turbulence intensity of the fluid interface layer effectively improves the stability of the magnetic fluid rotary seal. In this study, we simulated magnetic fluid sealing devices with different structures in liquid environments using the FLUENT software. The simulation results were verified through experimental analyses of the turbulence intensity at the sealing interface. The maximum turbulence intensity of the liquid interface layer increased with increasing shaft speed. At the same speed, the turbulence intensity was maximized at the shaft interface before gradually decreasing in a multistage linear pattern along the radial direction. A magnetic liquid seal with an optimized structure (OS) in the liquid environment was designed based on these results. The maximum turbulence intensity of the liquid interface layer in the OS was independent of the rotation speed and was more than 20% lower than that that in the traditional structure. These results provide a reference for designing magnetic liquid sealing devices.

Funder

National Natural Science Foundation of China

the Science and Technology Department of Sichuan Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3