Cost-Effective Nanoporous Gold Obtained by Dealloying Metastable Precursor, Au33Fe67, Reveals Excellent Methanol Electro-Oxidation Performance

Author:

Raj Deepti,Scaglione FedericoORCID,Fiore Gianluca,Rizzi PaolaORCID

Abstract

In this study, we report nanoporous gold (NPG) as an economic, efficient, and stable alternative electrocatalyst for methanol electro-oxidation. The said sample was successfully prepared from an Fe-rich metastable Au33Fe67 supersaturated solid solution acting as the precursor, which was formed into ribbons by the phenomenon of rapid solidification using melt-spinning technique. The as-quenched ribbon was then chemically dealloyed in 1 M HCl at 70 °C for different durations of time. A homogeneous, free-standing, and mechanically stable NPG sample was obtained with tunable ligament shape and size. The morphology and composition were characterized by using SEM with EDS, while the structure by XRD. The sample was examined as an electrocatalyst for methanol electro-oxidation profiting off its large surface area; cyclic voltammetry (CV) was the technique employed for electrochemical studies. In a basic solution of methanol and KOH, the sample displays a low peak potential of 0.47 V vs. Ag/AgCl for methanol electro-oxidation with a high peak current density of 0.43 mA/cm2. In addition, it demonstrates outstanding stability and high poisoning tolerance. It is noteworthy that the fabrication process of the NPG sample from start to end was intentionally opted to be sustainable, cost-effective, rapid, and feasible. The usage of critical raw materials was avoided. As a whole, the properties and results put forth by the NPG sample make it an inexpensive, sustainable, and excellent alternative as an electrocatalyst for methanol electro-oxidation.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3