Linear Electron Beam Assisted Roll-to-Roll in-Vacuum Flexographic Patterning for Flexible Thermoelectric Generators

Author:

Stuart Bryan W.,Morgan Katrina,Tao Xudong,Zeimpekis Ioannis,Feng Zhuo,Gregory Daniel,Assender Hazel E.

Abstract

In this work, we investigated the use of in-line linear electron beam irradiation (LEB) surface treatment integrated into a commercially compatible roll-to-roll (R2R) processing line, as a single fluorocarbon cleaning step, following flexography oil masking used to pattern layers for devices. Thermoelectric generators (TEGs) were selected as the flexible electronic device demonstrator; a green renewable energy harvester ideal for powering wearable technologies. BiTe/BiSbTe-based flexible TEGs (f-TEGs) were fabricated using in-line oil patterned aluminium electrodes, followed by a 600 W LEB cleaning step, in which the duration was optimised. A BiTe/BiSbTe f-TEG using an oil-patterned electrode and a 15 min LEB clean (to remove oil prior to BiTe/BiSbTe deposition) showed similar Seebeck and output power (S ~ 0.19 mV K−1 and p = 0.02 nW at ΔT = 20 K) compared to that of an oil-free reference f-TEG, demonstrating the success of using the LEB as a cleaning step to prevent any remaining oil interfering with the subsequent active material deposition. Device lifetimes were investigated, with electrode/thermoelectric interface degradation attributed to an aluminium/fluorine reaction, originating from the fluorine-rich masking oil. A BiTe/GeTe f-TEG using an oil-patterned/LEB clean, exceeded the lifetime of the comparable BiTe/BiSbTe f-TEG, highlighting the importance of deposited material reactivities with the additives from the masking oil, in this case fluorine. This work therefore demonstrates (i) full device architectures within a R2R system using vacuum flexography oil patterned electrodes; (ii) an enabling Electron beam cleansing step for removal of oil remnants; and (iii) that careful selection of masking oils is needed for the materials used when flexographic patterning during R2R.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3