Advances in flexible inorganic thermoelectrics

Author:

Shi Xiao‐Lei1,Cao Tianyi1,Chen Wenyi12,Hu Boxuan1,Sun Shuai1,Liu Wei‐Di13,Li Meng1,Lyu Wanyu1,Hong Min14ORCID,Chen Zhi‐Gang1ORCID

Affiliation:

1. School of Chemistry and Physics, ARC Research Hub in Zero‐emission Power Generation for Carbon Neutrality, and Centre for Materials Science Queensland University of Technology Brisbane Queensland Australia

2. School of Mechanical and Mining Engineering The University of Queensland Brisbane Queensland Australia

3. Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland Australia

4. Centre for Future Materials University of Southern Queensland Springfield Central Queensland Australia

Abstract

AbstractSolid‐state bismuth telluride‐based thermoelectric devices enable the generation of electricity from temperature differences and have been commercially applied in various fields. However, in many scenarios, the surface of the heat source is not flat. Therefore, it is crucial to develop flexible thermoelectric materials and devices to efficiently utilize heat sources and expand their applications. Compared with organic thermoelectric materials and devices, inorganic flexible thermoelectric materials and devices have much higher thermoelectric performance and stability. Considering the rapid development in this research field, we carefully summarize the design principles, structures, and thermoelectric properties of inorganic flexible materials and their devices reported in the recent 3 years, including sulfides, selenides, tellurides, and composite materials designed based on these inorganics. The structural designs of flexible thermoelectric devices based on micro‐sized bulk materials are also carefully summarized. Additionally, we overview the mechanical stability and methods for reducing internal resistance for designs of inorganic flexible thermoelectric devices. In the end, we provide outlooks on future research directions for inorganic flexible thermoelectric materials and devices. This review will help guide thermoelectric researchers, beginners, and students.

Funder

Australian Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3