Mechanical and Barrier Properties Optimization of Carboxymethyl Chitosan-Gelatin-Based Edible Film Using Response Surface Methodology

Author:

Zhang Yu-Lei12,Cui Qing-Liang2ORCID,Wang Yu1,Liu Jin-Long3,Zhang Yan-Qing2

Affiliation:

1. College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030800, China

2. College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030800, China

3. Foundation Department, Shanxi Agricultural University, Jinzhong 030800, China

Abstract

Edible coatings have attracted the attention of researchers in recent years due to their degradability, safety, non-toxicity, low cost, good preservation effect, and other advantages. To prepare a new edible film with good mechanical and barrier properties, carboxymethyl chitosan (CMCS) and gelatin (GL) were selected as the film-forming matrix in this experiment, and glycerol, CaCl2, Tween-20, and ascorbic acid (AA) have been added as plasticizers, crosslinking agents, surfactants, and antioxidants. Crosslinking agents and antioxidants first, the film was prepared by the casting method, and single factor tests were used to compare the effects of different CMCS: GL (w:w), glycerol, CaCl2, Tween-20, and AA on mechanical properties (Tensile Strength (TS), Elongation at break (EAB)) and barrier properties (Water Vapor Permeability (WVP), Oxygen Permeability (OP)). Then, the weighting of each performance index is determined by a combination of principal component analysis and the comprehensive membership evaluation method. The formula for calculating the overall rating of edible film performance was determined. Finally, the manufacturing process of edible film with better performance was optimized by a response surface test. The results showed that the influence of each factor on the performance of the edible film was as follows: Glycerol addition > CaCl2 addition > CMCS:GL, Tween-20, and AA had no significant influence on the performance of the edible film. When calculating the overall edible film property score, the weights of TS, EAB, WVP, and OP were 0.251, 0.068, 0.334, and 0.347, respectively. The optimal formulation for an edible film based on CMCS-GL with better properties than pure CMCS and GL film was CMCS:GL = 2:1, with the addition of 1% glycerol, 2% CaCl2, 0.1% Tween-20, and 2% AA. The TS, EAB, OP, and WVP of the film obtained with this formula were: 16.28 MPa, 71.46%, 1.39 × 10−12 g·cm/(cm2·s·Pa), 5.10 × 10−11 cm3·cm/(m2·s·Pa), respectively. This study suggests that CMCS-GL-based edible coatings can be used as a new food packaging material.

Funder

Shanxi Doctoral Graduates and Postdoctoral Researchers to Work in Jin Award Funding Research Projects

Shanxi Agricultural University doctoral research project

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3