Effect of the Atmosphere on the Properties of Aluminum Anodizing

Author:

Baltierra-Costeira Gabriela1,Camporredondo-Saucedo Jesús Emilio2ORCID,García-Rentería Marco Arturo3ORCID,Falcón-Franco Lázaro Abdiel3ORCID,Castruita-Ávila Laura Guadalupe2ORCID,García-Lara Adrián Moisés2

Affiliation:

1. Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza, Saltillo 25000, Coahuila, Mexico

2. Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Coahuila, Avenida Barranquilla s/n, Colonia Guadalupe, Monclova 25760, Coahuila, Mexico

3. Facultad de Metalurgia, Universidad Autónoma de Coahuila, Carr. 57, km 4.5, Monclova 25710, Coahuila, Mexico

Abstract

This study aims to quantify the effect of process parameters on the anodizing of Al6061 aluminum. To achieve this, studies on layer thickness, the porosity of the anodized surface, electrochemical techniques, X-ray diffraction, grain size estimation, and statistical analysis were conducted for three different atmospheres (without air, air, and oxygen). Parameter levels were established as follows: temperature (30 °C, 45 °C, and 60 °C), time (20 min, 40 min, and 60 min), electrolyte concentration (0.5 M), voltage (9 V), and current intensity (0.600 A). A 33 experimental design (three factors, three levels) was proposed, and mathematical models were obtained using general factorial design. The experimental design was used to determine the three most important variables in the optimal condition. A total of 27 tests were conducted using sulfuric acid electrolytic solutions, of which 12 samples were selected by the factorial design method, which simultaneously evaluates the effects of factors and their interactions in a single experiment. Measurement of porosity and oxide layer thickness was performed using scanning electron microscopy. The purity of the anodic layer formed was characterized using X-ray diffraction techniques with a vertical goniometer X-ray diffractometer. The electrochemical behavior is presented through potentiodynamic polarization curves for the anodic layer. A general factorial design and an analysis of variance (ANOVA) were conducted to establish the significant factors for layer thickness, grain size, and reaction rate. Finally, the best results and their parameters for each response are presented.

Funder

Universidad Autónoma de Coahuila

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3