Effects of Substrate Temperature on Nanomechanical Properties of Pulsed Laser Deposited Bi2Te3 Films

Author:

Cheng Hui-Ping,Le Phuoc HuuORCID,Tuyen Le Thi Cam,Jian Sheng-RuiORCID,Chung Yu-Chen,Teng I-Ju,Lin Chih-MingORCID,Juang Jenh-YihORCID

Abstract

The correlations among microstructure, surface morphology, hardness, and elastic modulus of Bi2Te3 thin films deposited on c-plane sapphire substrates by pulsed laser deposition are investigated. X-ray diffraction (XRD) and transmission electron microscopy are used to characterize the microstructures of the Bi2Te3 thin films. The XRD analyses revealed that the Bi2Te3 thin films were highly (00l)-oriented and exhibited progressively improved crystallinity when the substrate temperature (TS) increased. The hardness and elastic modulus of the Bi2Te3 thin films determined by nanoindentation operated with the continuous contact stiffness measurement (CSM) mode are both substantially larger than those reported for bulk samples, albeit both decrease monotonically with increasing crystallite size and follow the Hall—Petch relation closely. Moreover, the Berkovich nanoindentation-induced crack exhibited trans-granular cracking behaviors for all films investigated. The fracture toughness was significantly higher for films deposited at the lower TS; meanwhile, the fracture energy was almost the same when the crystallite size was suppressed, which indicated a prominent role of grain boundary in governing the deformation characteristics of the present Bi2Te3 films.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3