Finite Element Analysis of Nanoindentation Responses in Bi2Se3 Thin Films

Author:

Cheng Shu-Wei,Chen Bo-Syun,Jian Sheng-RuiORCID,Hu Yu-Min,Le Phuoc HuuORCID,Tuyen Le Thi Cam,Lee Jyh-WeiORCID,Juang Jenh-YihORCID

Abstract

In this study, the nanoindentation responses of Bi2Se3 thin film were quantitatively analyzed and simulated by using the finite element method (FEM). The hardness and Young’s modulus of Bi2Se3 thin films were experimentally determined using the continuous contact stiffness measurements option built into a Berkovich nanoindenter. Concurrently, FEM was conducted to establish a model describing the contact mechanics at the film/substrate interface, which was then used to reproduce the nanoindentation load-depth and hardness-depth curves. As such, the appropriate material parameters were obtained by correlating the FEM results with the corresponding experimental load-displacement curves. Moreover, the detailed nanoindentation-induced stress distribution in the vicinity around the interface of Bi2Se3 thin film and c-plane sapphires was mapped by FEM simulation for three different indenters, namely, the Berkovich, spherical and flat punch indenters. The results indicated that the nanoindentation-induced stress distribution at the film/substrate interface is indeed strongly dependent on the indenter’s geometric shape.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3