Abrasive Wear Resistance and Tribological Characteristics of Pulsed Hard Anodized Layers on Aluminum Alloy 1011 in Tribocontact with Steel and Ceramics in Various Lubricants

Author:

Student Mykhailo1,Pohrelyuk Iryna1ORCID,Padgurskas Juozas2ORCID,Rukuiža Raimundas2ORCID,Hvozdets’kyi Volodymyr1,Zadorozhna Khrystyna1,Veselivska Halyna1ORCID,Student Oleksandra1,Tkachuk Oleh1

Affiliation:

1. Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 5, Naukova Str., 79060 Lviv, Ukraine

2. Department of Mechanical Energy and Biotechnology Engineering, Vytautas Magnus University, Akademija, LT-53361 Kaunas, Lithuania

Abstract

Based on the analysis of known methods of surface hardening of aluminum alloys (chromium plating, plasma electrolytic oxidation, hard anodizing), the prospects for pulsed hard anodizing are shown both for improving the functional characteristics of alloys and for large-scale implementation of this method. The purpose of this work is to show the possibility of pulsed hard anodizing to improve the serviceability of low-strength aluminum alloy 1011 under conditions of abrasive and sliding wear. The influence of the pulsed anodizing temperature on the phase-structural state of the synthesized layers, their abrasive wear resistance, and tribological characteristics in various lubricants were established, and the mechanism of wear of these layers was proposed. It is shown that with an increase in the temperature of pulsed anodizing, the wear resistance of the synthesized layers increases, and their abrasive wear resistance decreases. The negative effect of lubricating media on the wear resistance of the synthesized layers compared to tests under dry conditions was shown, and an explanation for this phenomenon is proposed. A significant (up to 40 times) increase in wear resistance in dry friction of anodized low-strength aluminum alloy 1011 compared to high-strength aluminum alloy 1050 was shown.

Funder

Department of Physical and Technical Problems of Materials Science of the National Academy of Sciences

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3