Review of Cr-Free Coatings for the Corrosion Protection of Aluminum Aerospace Alloys

Author:

Peltier FabienneORCID,Thierry DominiqueORCID

Abstract

Aluminum alloys are known to have many advantages (e.g., light weight and low cost) but they are not immune to corrosion. So, it is important to assess their corrosion behavior, in particular under atmospheric conditions. To protect aluminum alloys against corrosion, paints are generally applied onto the materials. Corrosion protection in the aerospace industry consists of a conversion or anodized coating, an inhibited primer, and a top-coat. Chromate conversion coating (CCC) and primers containing chromate pigments have been widely used in the aerospace industry over the last decades. However, new environmental regulations have led to major changes for aluminum corrosion protection. By limiting or prohibiting some chemicals, for instance Cr(VI), the European regulation REACH (Regulation on Registration Evaluation, Authorization and Restriction of Chemicals) has induced major changes to some of the finishing processes of aluminum alloys (e.g., chromate conversion, chromic acid anodizing, and chromate sealing). Interesting results have been obtained while seeking replacements for Cr(VI), for example, with the incorporation of cerium, lithium salt, or nanocontainers loaded with corrosion inhibitors in organic coatings. For several years, hybrid sol–gel coatings able to replace the pre-treatment and primer steps have been under development, showing interesting results. New prospects for the future involve the use of photopolymerization to reduce the energy-intensive heat treatment needed in sol–gel technology. It will also be necessary to test these new technologies in service conditions or in accelerated corrosion tests before being able to conclude on the real effectiveness of these coatings. This review summarizes the recent developments in Cr-free coatings for aluminum alloys. Their advantages and drawbacks are also discussed.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3