UV/Ozone-Assisted Rapid Formation of High-Quality Tribological Self-Assembled Monolayer

Author:

Fan Zhitao,Zhi Chao,Wu Lei,Zhang Pei,Feng Chengqiang,Deng Liang,Yu Bingjun,Qian Linmao

Abstract

UV/ozone (UVO)-assisted formation of self-assembled monolayer (SAM) of 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDS) was prepared on a glass surface. The effect of UVO exposure time on surface roughness and hydrophilicity was investigated through goniometer and atomic force microscope (AFM), and deposition time-dependent SAM quality was detected by AFM and X-ray photoelectron spectroscopy (XPS). The glass surface became smooth with UVO radiation after 10 min, and the hydrophilicity was also improved after the treatment. Confirmed by surface topography detection and chemical composition analysis, a high-quality SAM can be formed rapidly on glass with 10 min UVO treatment followed by 2 h deposition in PFDS solution. Excellent tribological performances of SAM coated with UVO treatment glass were demonstrated by friction and wear tests on AFM compared to film-deposited glass without UVO treatment and original glass. The study sheds a light on preparing high-quality lubrication and antiwear self-assembled films on the surface of engineering materials.

Funder

Sichuan Province Science and Technology Support Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3