Discoloration Resistance of Electrolytic Copper Foil Following 1,2,3-Benzotriazole Surface Treatment with Sodium Molybdate

Author:

Shin Dong-Jun,Kim Yu-KyoungORCID,Yoon Jeong-Mo,Park Il-Song

Abstract

The copper which an important component in the electronics industry, can suffer from discoloration and corrosion. The electrolytic copper foil was treated by 1,2,3-benzo-triazole (BTA) for an environmentally friendly non-chromate surface treatment. It was designed to prevent discoloration and improve corrosion resistance, consisted of BTA and inorganic sodium molybdate (Na2MoO4). Also the ratio of the constituent compounds and the deposition time were varied. Electrochemical corrosion of the Cu-BTA was evaluated using potentiodynamic polarization. Discoloration was analyzed after humidity and heat resistance conditioning. Surface characteristics were evaluated using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Increasing corrosion potential and decreasing current density were observed with increasing Na2MoO4 content. A denser protective coating formed as the deposition time increased. Although chromate treatment under severe humidity (80% humidity, 80 °C, 100 h) provided the highest humidity resistance, surface treatment with Na2MoO4 had better heat discoloration inhibition under severe heat-resistant conditions (180 °C, 10 min). When BTA reacts with Cu to form the Cu-BTA-type insoluble protective film, Na2MoO4 accelerates the film formation without being itself adsorbed onto the film. Therefore, the addition of Na2MoO4 increased anticorrosive efficiency through direct/indirect action.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3