Modification of Cu(111) Surface with Alkylphosphonic Acids in Aqueous and Ethanol Solution—An Experimental and Theoretical Study

Author:

Mehmeti ValbonëORCID,Podvorica Fetah

Abstract

Alkylphosphonic acids are well known for their ability to form self-assembled monolayers on hydroxide surfaces. A crucial step to understanding fundamentally how these surfaces are created is the elucidation of the interaction process that leads to such interface creation. In this study, we employed electrochemical impedance spectroscopy (EIS), Monte Carlo and molecular dynamics to understand this process. The interaction with the Cu(111) surface of three different alkylphosphonic acids (hexyl-, octyl- and decylphosphonic acids) is evaluated in an aqueous acidic and in an ethanol solution by Monte Carlo and molecular dynamics simulations, while EIS measurements are used to put in evidence the impact of the layer made in ethanol on copper protection. Nyquist diagrams of copper samples modified with an alkylphosphonic monolayer showed a higher polarization resistance that mitigates the copper corrosion in an aqueous acid medium. The phase–frequency Bode plots had higher and broader phase maxima for a modified copper surface with phosphonic moieties, which confirmed the ability of this organic layer to prevent copper corrosion.

Publisher

MDPI AG

Subject

Psychiatry and Mental health,Health Policy,Neuropsychology and Physiological Psychology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ab initio exploration of modified carbon nanotubes as potential corrosion inhibitors;Macedonian Journal of Chemistry and Chemical Engineering;2024-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3