Improving Mechanical and Tribological Behaviors of GLC Films on NBR under Water Lubrication by Doping Ti and N

Author:

Zhou Zhen,Han Yanfeng,Qian Jin

Abstract

Water lubrication has been widely used in marine equipment, where rubber bearings and seals suffer intense friction and severe wear under mixed and boundary conditions. It has good research prospects and practical value to study the composite of amorphous carbon on water lubrication rubber to improve lubrication and reduce wear. In this work, modified graphite-like carbon films incorporated with titanium and nitrogen ((Ti:N)-GLC) were integrated on nitrile butadiene rubber (NBR) with multi-target magnetron sputtering. Direct current (DC) sputtering of graphite target was used as the carbon source. The incorporation of Ti and N elements was accomplished by using radio frequency (RF) magnetron sputtering of three different targets: Ti, TiC and TiN, to optimize the mechanical and tribological performance. This work is aimed to clarify the modification mechanism of Ti and N incorporation and obtain the optimum scheme. The influence of RF power on surface topography, chemical composition, mechanical properties and tribological properties was investigated by SEM, XPS, Raman spectra, nanoindentor and tribometer. The consequences revealed that the characteristics of films depend on RF target types and power. For the Ti-C and TiC-C series, when RF power is 100 W and below, with low content of Ti (6 at.%~13 at.%) and N (around 10 at.%), the incorporation of Ti and N optimizes the surface topology, improves the mechanical properties and maintains excellent adhesion to NBR substrate. The tribological and wear behaviors of (Ti:N)-GLC films are better than GLC films under mixed and boundary lubrication. When RF power grows to 200 W, the dopants result in the deterioration of surface and mechanical properties, followed by worse lubrication and wear behaviors. For TiN-C series, the incorporation of TiN takes no advantage over GLC films, even worse in the case of high RF power. Overall, the incorporation of Ti or TiC by magnetron sputtering in Ar/N2 atmosphere is an effective modification method for GLC films on NBR to improve mechanical and tribological behaviors.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3