Fatigue and tensile behaviors of fiber-reinforced thermosetting composites embedded with nanoparticles

Author:

Zaghloul Moustafa Mahmoud Yousry12ORCID,Mohamed Yasser S1,El-Gamal Hassan1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Alexandria University, Egypt

2. Department of Materials Science and Engineering, Egypt-Japan University of Science and Technology, Egypt

Abstract

The development of studying nanocomposites has grown up rapidly in the last decade. The objective of the current research is to study the influence of incorporating cellulose nanocrystals on the mechanical properties of polyester resins, as well as to develop continuous filament e-glass fiber-reinforced polyester nanocomposites, which combine traditional composites with the added advantages of nanocomposites. Cellulose nanocrystals were uniformly dispersed into the polyester resin by an ultrasonic processor. The incorporation and dispersion of cellulose nanocrystals were a state-of-the-art method aimed at overcoming poor dispersion problems at low weight fractions of nanoparticles. Three weight percentages of cellulose nanocrystals were prepared, which were 2%, 4% and 6%. Fatigue and tensile specimens were manufactured by resin transfer molding process. Cellulose nanocrystals were fully characterized by using X-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectroscopy and zeta-sizer analysis. The optimum incorporation percentage of cellulose nanocrystals was used to prepare glass fiber-reinforced polyester specimens containing cellulose nanocrystals. Tensile and fatigue behaviors of glass fiber-reinforced polyester composites were evaluated by means of universal testing machine and rotating bending fatigue machine. A series of testing specimens for each property was examined in accordance with the corresponding ASTM and JIS standards. The experimental results showed that the addition of 4% cellulose nanocrystals to polyester matrix lead to the optimum tensile and fatigue properties. Mechanical properties were improved through the enhanced material design and proper selection of compatible nanoparticles, and adding cellulose nanocrystals in a weight fraction that does not affect the mechanical properties of glass fiber-reinforced polyester nanocomposites negatively. The presented design of material and geometry have shown promising results for wide range of applications, particularly in biomedical industry, energy and electronics.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3