Incorporating Physics-Based Models into Equivalent Circuit Analysis of EIS Data from Organic Coatings

Author:

Policastro Steven A.1ORCID,Anderson Rachel M.1ORCID,Hangarter Carlos M.1,Arcari Attilio1,Iezzi Erick B.1ORCID

Affiliation:

1. Center for Corrosion Science and Engineering, Chemistry Division, U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, USA

Abstract

Electrochemical impedance spectroscopy (EIS) is a widely used method for monitoring coatings because it can be done in situ and causes little damage to the coating. However, interpreting the impedance data from coatings in order to determine the state of the coating and its protective abilities is challenging. A modified version of the rapid electrochemical assessment of paint (REAP) equivalent circuit is developed here, along with a method to calculate the impedance of a circuit using matrix algebra. This new equivalent circuit and the calculation method are used to analyze EIS data obtained from a two-layer commercial organic coating system immersed in NaCl solutions with different concentrations and at different temperatures. The matrix calculation method is validated by comparing results obtained from commercial analysis software to this method for two different equivalent circuits, and the parameter values are nearly equal. Physics-based models of the equivalent circuit elements are derived and used to obtain both initial estimates for the regressions and physics-based constraints on the model parameters. These models are integrated into the regression procedure, and the corrected Akaike information criterion (AICc) is used to compare fits between the new circuit and classic equivalent circuits. The AICc values indicate the new circuit results in better fits than classic equivalent circuits used for coatings analysis.

Funder

Strategic Environmental Research and Development Program

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3