The Effect of the TiO2 Anodization Layer in Pedicle Screw Conductivity: An Analytical, Numerical, and Experimental Approach

Author:

Fonseca Pedro123ORCID,Goethel Márcio Fagundes13ORCID,Vilas-Boas João Paulo134ORCID,Gutierres Manuel15ORCID,Correia Miguel Velhote126ORCID

Affiliation:

1. Porto Biomechanics Laboratory, Faculty of Sports, University of Porto, 4200-450 Porto, Portugal

2. Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal

3. Faculty of Sports, University of Porto, 4200-450 Porto, Portugal

4. Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, 4200-450 Porto, Portugal

5. Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal

6. Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal

Abstract

The electrical stimulation of pedicle screws is a technique used to ensure its correct placement within the vertebrae pedicle. Several authors have studied these screws’ electrical properties with the objective of understanding if they are a potential source of false negatives. As titanium screws are anodized with different thicknesses of a high electrical resistance oxide (TiO2), this study investigated, using analytical, numerical, and experimental methods, how its thickness may affect pedicle screw’s resistance and conductivity. Analytical results have demonstrated that the thickness of the TiO2 layer does result in a significant radial resistance increase (44.21 mΩ/nm, for Ø 4.5 mm), and a decrease of conductivity with layers thicker than 150 nm. The numerical approach denotes that the geometry of the screw further results in a decrease in the pedicle screw conductivity, especially after 125 nm. Additionally, the experimental results demonstrate that there is indeed an effective decrease in conductivity with an increase in the TiO2 layer thickness, which is also reflected in the screw’s total resistance. While the magnitude of the resistance associated with each TiO2 layer thickness may not be enough to compromise the ability to use anodized pedicle screws with a high-voltage electrical stimulator, pedicle screws should be the subject of more frequent electrical characterisation studies.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3