Incorporation of Mg2+/Si4+ in ZnGa2O4:Cr3+ to Generate Remarkably Improved Near-Infrared Persistent Luminescence

Author:

Zhang Shimeng,Xiahou Junqing,Sun Xudong,Zhu Qi

Abstract

Near-infrared emitting nano-sized particles of ZnGa2−x(Mg/Si)xO4:Cr3+ (x = 0–0.15, termed as ZGMSO:Cr3+) with persistent luminescence were prepared by sol-gel processing followed by calcination. The samples were tested by XRD, TEM, STEM, SAED, Raman, XPS, UV-Vis-NIR, TL, PLE/PL spectroscopy, and persistent luminescence decay analysis. Equimolar incorporation of Mg2+ and Si4+ ions did not change the spindle structure of ZnGa2O4 seriously. Most Mg2+ ions are more likely to occupy the sites in octahedron, but Si4+ ions are more likely to occupy the sites in tetrahedron in priority. A broader bandgap, up shift of conduction band minimum, and more anti-defects were found at a higher Mg2+/Si4+ doping concentration. ZGMSO:Cr3+ outputs near-infrared emission with a dominated band at 694 nm (2E → 4A2 transition of Cr3+), which can last longer than 48 h after the stoppage of UV irradiation. Mg2+/Si4+ doping contributes to a better near-infrared persistent luminescence, and the strongest and the longest NIR afterglow was observed at x = 0.05, owing to that the x = 0.05 sample has the deepest defects. The synthesized nanoparticles of ZGMSO:Cr3+ not only output intense NIR afterglow but also can be recharged by the red light of LED several times, indicating that they are the potential nano probes for bio imaging in living animals.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3