Fabrication of Superhydrophobic Wood Surface by Etching Polydopamine Coating with Sodium Hydroxide

Author:

Yi ZedeORCID,Zhao Bo,Liao Murong,Qin ZhiyongORCID

Abstract

Superhydrophobic treatment of wood surfaces can effectively prevent the contact between the external moisture and wood, which improves the service life of the wood. In this study, different rough surfaces of wood were constructed, derived from the self-polymerization of dopamine (DA) in weak base solution to form a polydopamine (PDA) coating and the deprotonation of the PDA coating in a strong base solution. Furthermore, octadecyltrichlorosilane (OTS) was used as a low-surface-free-energy agent to modify rough surface in order to prepare superhydrophobic woods: Wood@PDA–NaOH–OTS and the Wood@PDA–NaOH/SiO2–OTS. The contact angles (CAs) and sliding angles (SAs) of the resulting superhydrophobic woods were tested. The results showed that the CA and SA of the Wood@PDA–NaOH–OTS were 151° and 4.8°, respectively; the CA and SA of the Wood@PDA–NaOH/SiO2–OTS were 155.1° and 5.0°, respectively. Surface electron microscopy (SEM) images presented that NaOH successfully etched the PDA coating, and the roughness was further improved by adding nano-SiO2. Atomic force microscope images (AFM) revealed that the nano-SiO2 particles could effectively provide nanolevel roughness, which was beneficial to the wood’s superhydrophobic properties. In addition, the obtained superhydrophobic wood possessed strong surface stability and anti-loss property, as well as resistance to acid-base solution and organic solvent.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference38 articles.

1. Current status and application prospects of wood modification;Gu;China Wood Ind.,2012

2. Incorporation of ligno-cellulose nanofibrils and bark extractives in water-based coatings for improved wood protection

3. Progress in the research of functional modification on bionic fabrication of superhydrophobic wood;Liu;J. Funct. Mater.,2015

4. Research progress and preparation methods of biomimetic functional superhydrophobic wood surfaces;Liu;Sci. Technol. Rev.,2016

5. Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3