Superhydrophobic Wood Surfaces: Recent Developments and Future Perspectives

Author:

Gao Xianming1,Wang Mingkun1,He Zhiwei1ORCID

Affiliation:

1. Anti-Icing Materials (AIM) Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

Wood is a renewable material that has been widely utilized as indoor and outdoor construction and decoration material in our daily life. Although wood has many advantages (i.e., light weight, high strength, low price and easy machinability), it has some drawbacks that influence dimensional stability, cracking and decay resistance in real practical applications. To mitigate these issues, superhydrophobic surfaces have been introduced to wood substrates, creating superhydrophobic wood surfaces (SHWSs) that can improve stability, water resistance, ultraviolet radiation resistance and flame retardancy. Herein, the recent developments and future perspectives of SHWSs are reviewed. Firstly, the preparation methods of SHWSs are summarized and discussed in terms of immersion, spray-coating, hydrothermal synthesis, dip-coating, deposition, sol-gel process and other methods, respectively. Due to the characteristics of the above preparation methods and the special properties of wood substrates, multiple methods are suggested to be combined to prepare SHWSs rather than each individual method. Secondly, the versatile practical applications of SHWSs are introduced, including anti-fungi/anti-bacteria, oil/water separation, fire-resistance, anti-ultraviolet irradiation, electromagnetic interference shielding, photocatalytic performance, and anti-icing. When discussing these practical applications, the advantages of SHWSs and the reason why SHWSs can be used in such applications are also mentioned. Finally, we provide with perspectives and outlooks for the future developments and applications of SHWSs, expecting to extend the utilization of SHWSs in our daily life and industry.

Funder

Fundamental Research Funds for the Provincial Universities of Zhejiang

National Natural Science Foundation of China

Science Foundation of Hangzhou Dianzi University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference212 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3