Influence of Hydrogen-Nitrogen Hybrid Passivation on the Gate Oxide Film of n-Type 4H-SiC MOS Capacitors

Author:

Jia YifanORCID,Sun Shengjun,Liu Xiangtai,Lu Qin,Qin Ke,Wang Shaoqing,Guan Yunhe,Chen Haifeng,Tang Xiaoyan,Zhang Yuming

Abstract

Hydrogen-nitrogen hybrid passivation treatment for growing high-property gate oxide films by high-temperature wet oxidation, with short-time NO POA, is proposed and demonstrated. Secondary ion mass spectroscopy (SIMS) measurements show that the proposed method causes hydrogen and appropriate nitrogen atoms to accumulate in Gaussian-like distributions near the SiO2/SiC interface. Moreover, the hydrogen atoms are also incorporated into the grown SiO2 layer, with a concentration of approximately 1 × 1019 cm−3. The conductance characteristics indicate that the induced hydrogen and nitrogen passivation atoms near the interface can effectively reduce the density of interface traps and near-interface traps. The current-voltage (I-V), X-ray photoelectron spectroscopy (XPS), and time-dependent bias stress (TDBS) with ultraviolet light (UVL) irradiation results demonstrate that the grown SiO2 film with the incorporated hydrogen passivation atoms can effectively reduce the density of oxide electron traps, leading to the barrier height being improved and the leakage current being reduced.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi Province

Scientific Research Program Funded by Shaanxi Provincial Education Department

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3