Surface Analysis of Chamber Coating Materials Exposed to CF4/O2 Plasma

Author:

Park Seung Hyun,Kim Kyung Eon,Hong Sang JeenORCID

Abstract

Coating the inner surfaces of high-powered plasma processing equipment has become crucial for reducing maintenance costs, process drift, and contaminants. The conventionally preferred alumina (Al2O3) coating has been replaced with yttria (Y2O3) due to the long-standing endurance achieved by fluorine-based etching; however, the continuous increase in radio frequency (RF) power necessitates the use of alternative coating materials to reduce process shift in a series of high-powered semiconductor manufacturing environments. In this study, we investigated the fluorine-based etching resistance of atmospheric pressure-sprayed alumina, yttria, yttrium aluminum garnet (YAG), and yttrium oxyfluoride (YOF). The prepared ceramic-coated samples were directly exposed to silicon oxide etching, and the surfaces of the plasma-exposed samples were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. We found that an ideal coating material must demonstrate high plasma-induced structure distortion by the fluorine atom from the radical. For endurance to fluorine-based plasma exposure, the bonding structure with fluoride was shown to be more effective than oxide-based ceramics. Thus, fluoride-based ceramic materials can be promising candidates for chamber coating materials.

Funder

Korea Institute for Advancement of Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3