Microneedle Array Electrode-Based Wearable EMG System for Detection of Driver Drowsiness through Steering Wheel Grip

Author:

Satti Afraiz Tariq,Kim Jiyoun,Yi Eunsurk,Cho Hwi-youngORCID,Cho SungboORCID

Abstract

Driver drowsiness is a major cause of fatal accidents throughout the world. Recently, some studies have investigated steering wheel grip force-based alternative methods for detecting driver drowsiness. In this study, a driver drowsiness detection system was developed by investigating the electromyography (EMG) signal of the muscles involved in steering wheel grip during driving. The EMG signal was measured from the forearm position of the driver during a one-hour interactive driving task. Additionally, the participant’s drowsiness level was also measured to investigate the relationship between muscle activity and driver’s drowsiness level. Frequency domain analysis was performed using the short-time Fourier transform (STFT) and spectrogram to assess the frequency response of the resultant signal. An EMG signal magnitude-based driver drowsiness detection and alertness algorithm is also proposed. The algorithm detects weak muscle activity by detecting the fall in EMG signal magnitude due to an increase in driver drowsiness. The previously presented microneedle electrode (MNE) was used to acquire the EMG signal and compared with the signal obtained using silver-silver chloride (Ag/AgCl) wet electrodes. The results indicated that during the driving task, participants’ drowsiness level increased while the activity of the muscles involved in steering wheel grip decreased concurrently over time. Frequency domain analysis showed that the frequency components shifted from the high to low-frequency spectrum during the one-hour driving task. The proposed algorithm showed good performance for the detection of low muscle activity in real time. MNE showed highly comparable results with dry Ag/AgCl electrodes, which confirm its use for EMG signal monitoring. The overall results indicate that the presented method has good potential to be used as a driver’s drowsiness detection and alertness system.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3