Research on Fatigued-Driving Detection Method by Integrating Lightweight YOLOv5s and Facial 3D Keypoints

Author:

Ran Xiansheng1,He Shuai1ORCID,Li Rui1

Affiliation:

1. School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China

Abstract

In response to the problem of high computational and parameter requirements of fatigued-driving detection models, as well as weak facial-feature keypoint extraction capability, this paper proposes a lightweight and real-time fatigued-driving detection model based on an improved YOLOv5s and Attention Mesh 3D keypoint extraction method. The main strategies are as follows: (1) Using Shufflenetv2_BD to reconstruct the Backbone network to reduce parameter complexity and computational load. (2) Introducing and improving the fusion method of the Cross-scale Aggregation Module (CAM) between the Backbone and Neck networks to reduce information loss in shallow features of closed-eyes and closed-mouth categories. (3) Building a lightweight Context Information Fusion Module by combining the Efficient Multi-Scale Module (EAM) and Depthwise Over-Parameterized Convolution (DoConv) to enhance the Neck network’s ability to extract facial features. (4) Redefining the loss function using Wise-IoU (WIoU) to accelerate model convergence. Finally, the fatigued-driving detection model is constructed by combining the classification detection results with the thresholds of continuous closed-eye frames, continuous yawning frames, and PERCLOS (Percentage of Eyelid Closure over the Pupil over Time) of eyes and mouth. Under the premise that the number of parameters and the size of the baseline model are reduced by 58% and 56.3%, respectively, and the floating point computation is only 5.9 GFLOPs, the average accuracy of the baseline model is increased by 1%, and the Fatigued-recognition rate is 96.3%, which proves that the proposed algorithm can achieve accurate and stable real-time detection while lightweight. It provides strong support for the lightweight deployment of vehicle terminals.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3