A Study on Dining-Out Trends Using Big Data: Focusing on Changes since COVID-19

Author:

Jung Hyo-SunORCID,Yoon Hye-Hyun,Song Min-Kyung

Abstract

This study examined consumers’ emotions and needs related to dining-out experiences before and during the COVID-19 crisis. This study identifies words closely associated with the keyword “dining-out” based on big data gleaned from social media and investigates consumers’ perceptions of dining-out and related issues before and after COVID-19. The research findings can be summarized as follows: In 2019, frequently appearing dining-related words were dining-out, family, famous restaurant, recommend, and dinner. In 2020, they were dining-out, family, famous restaurant, and Corona. The analysis results for the dining-out sentimental network based on 2019 data revealed discourses revolving around delicious, nice, and easily. For the 2020 data, discourses revolved around struggling, and, cautious. The analysis of consumers’ dining-out demand network for 2019 data showed discourses centered around reservation, famous restaurant, meal, order, and coffee. However, for 2020 data, discourses were formed around delivery, price, order, take-out, and social distance. In short, with the outbreak of the pandemic, delivery, takeout, and social distance emerged as new search words. In addition, compared with before the COVID-19 pandemic, a weakening trend in positive emotions and an increasing trend in negative emotions were detected after the outbreak of the COVID-19 pandemic; specifically, fear was found to be the fear emotion.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference41 articles.

1. Unstructured big data analysis algorithm and simulation of Internet of Things based on machine learning

2. Big Data Analytics, Future Architectures, Skills & Road Maps for the CIO;Carter,2011

3. The importance of big data: A definition;Laney;Gart. Retrieved,2012

4. Big Data: The Next Frontier for Innovation, Competition, and Productivity,2011

5. Social media: The new hybrid element of the promotion mix

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3