Prediction of the Energy Self-Sufficiency Rate of Major New Renewable Energy Types Based on Zero-Energy Building Certification Cases in South Korea

Author:

Wang Seongjo,Tae Sungho,Jang Hyeongjae

Abstract

There is an increasing interest in new renewable energy sources for achieving net zero emissions. Consequently, the construction industry has mandated zero-energy building certification (ZEB), through the usage of new renewable energy. However, because of the variations in the energy self-sufficiency rate (ESR) among the new renewable energy types, incorrect ESR prediction at the design stage may lead to problems. Hence, in this study, the ESR and construction cost are analyzed for each new renewable energy capacity to predict the ESR of photovoltaic (PV), building integrated photovoltaic (BIPV), geothermal, and fuel cell systems. Passive and active technology elements of the ZEB cases in Korea are analyzed, and by establishing a standard model with the average value of each case, the ESR is calculated for each new renewable energy capacity, and the calculation formulas are derived. The results indicate that for the PV and BIPV systems, the rate of ESR increases with the capacity (kWp) and is constant at 0.54% and 0.34%, respectively. However, for the geothermal system and fuel cells, the average ESR is 0.016% and 1.46%, respectively, but as the rate of ESR increase with the capacity (kW) gradually decreases, the calculation formulas are derived with a log graph.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference40 articles.

1. Mitigation Pathways Compatible with 1.5 °C in the Context of Sustainable Development;Rogelj,2018

2. Paris Agreement climate proposals need a boost to keep warming well below 2 °C

3. European Commission Climate Strategies & Targetshttps://ec.europa.eu/clima/policies/strategies/2030_en

4. Decarbonizing Transport in the European Union: Emission Performance Standards and the Perspectives for a European Green Deal

5. Short Circuiting Policy: Interest Groups and the Battle over Clean Energy and Climate Policy in the American State;Stokes,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3