Design of Intelligent Management Platform for Industry–Education Cooperation of Vocational Education by Data Mining

Author:

Wu Min,Hao Xinxin,Lv Yang,Hu Zihan

Abstract

Data are playing an increasingly important role in the development of industry–education cooperation strategies in vocational education and training. The objective of this study was to promote the comprehensive progress of an industry–education cooperation system and improve the effect of the application of big data technology in this system. First, we designed of a big data technology application in an intelligent management platform system for industry–education cooperation. Second, we analyzed the synthetical design of the system. Finally, we optimized and designed a support vector machine (SVM) data mining (DM) algorithm model based on big data, and evaluated the model. The results revealed that the designed algorithm model provides outstanding advantages compared with similar algorithm models. In general, the highest average computation time of the designed SVM algorithm model is about 95 ms. The overall average calculation time linearly decreases around 200 iterations and tends to be stable, and the lowest overall average computation time is about 20 ms. In the DM process, the highest accuracy rate of the model is about 97%, and the lowest is about 92%. The DM accuracy rate is always stable as the number of iterations of the model continues to increase. The designed model slowly increases the occupancy rate of the system in the process of increasing computing time. At about 60 min, the system occupancy rate of the model tends to be stable, and the highest is maintained at about 23%. This study not only provides technical support for the optimization of DM algorithms with big data technology, but also contributes to the integrated development of industry–education cooperation systems.

Funder

The National Social Science Fund of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3