Abstract
Cloud manufacturing is an emerging service-oriented paradigm that works by taking advantage of distributed manufacturing resources and capabilities to collaboratively perform a manufacturing task, with the consideration of QoS (Quality of Service) requirements such as cost, time and quality. Incorporating environmental concerns and sustainability into cloud manufacturing to produce a much greener product has become an urgent issue since there is fierce market competition and an increasing environment consciousness from customers. In this paper, we present a multi-objective optimization approach to selecting and scheduling cloud manufacturing services from the viewpoints of the economy and environment including carbon emissions and water resource. Subject to the carbon cap regulation, a multi-objective model for a cloud manufacturing task is built with the aim of minimizing total costs, carbon emissions, and water resource use. Transportation mode selections and carbon emissions from both cloud manufacturing services and transportation activities are taken into account in this model. The ε-constraint method is employed to obtain the exact Pareto front of optimal solutions. A case study from automobile cloud manufacturing is used to illustrate the effectiveness of the presented approach. Numerical experiments are conducted to compare the presented approach and the simple additive weighting method. The results show that the presented ε-constraint method can obtain a better and more diverse Pareto set of solutions and that it can solve the models in a reasonable time.
Funder
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献