Synthesis of Poly(aniline-co-benzene)-Based Hypercrosslinked Polymer for Hg(II) Ions Removal from Polluted Water: Kinetic and Thermodynamic Studies

Author:

Aljboar Mashael T.1,Alghamdi Abdulaziz Ali1ORCID,Al-Odayni Abdel-Basit2ORCID,Al-Zaben Maha I.1,Al-Kahtani Abdullah1ORCID,Saeed Waseem Sharaf2ORCID

Affiliation:

1. Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

2. Department of Restorative Dental Sciences, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia

Abstract

The aim of this work was to investigate the adsorption performance of a highly crosslinked poly(aniline-co-benzene) (PAB) copolymeric network. This hypercrosslinked polymer (HCP) was obtained via the Friedel–Craft reaction in the presence of FeCl3 as an alkylation catalyst. The HCP was characterized using FTIR, SEM, TGA-DTA-DSC thermograms, and BET surface area. The analysis revealed a major mesoporous (an average pore diameter of 4.96 nm) structure, a surface area of 987 m2/g, and adequate chemical and thermal stability, thus supporting its potential as an adsorbent. The PAB HCP capability as an adsorbent for removing mercury ions (Hg2+) from wastewater was examined, and the data obtained were kinetically and thermodynamically modeled. The data were found to fit PFO well (R2 = 0.999), suggesting a physisorption process and a rate-limiting step involving the diffusion process, as proven with IPD and LFD models. The adsorption of Hg2+ on PAB was spontaneous (ΔG° is negative; −4.41 kJ/mol at 298 K), endothermic (ΔH° is positive; 32.39 kJ/mol), and random (ΔS° is positive; 123.48 J/mol·K) at the adsorption interface. The thermodynamic analysis also suggested a physical adsorption mechanism (ΔG° between −20 and 0 kJ/mol). These findings promote the potential application of PAB HCP as an efficient adsorbent for removing Hg2+ ions and other heavy metal ions from polluted environments.

Funder

King Saud University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3