Removal of Mercury(II) from Aqueous Solutions by Adsorption on Poly(1-amino-5-chloroanthraquinone) Nanofibrils: Equilibrium, Kinetics, and Mechanism Studies

Author:

Huang Shaojun1,Ma Chengzhang2,Liao Yaozu3,Min Chungang1,Du Ping1,Jiang Yubo4

Affiliation:

1. Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, China

2. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

3. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

4. Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China

Abstract

Poly(1-amino-5-chloroanthraquinone) (PACA) nanofibrils were applied as novel nanoadsorbents for highly toxic mercury removal from aqueous solutions. A series of batch adsorption experiments were conducted to study the effect of adsorbent dose, pH, contact time, and metal concentration on Hg(II) uptake by PACA nanofibrils. Kinetic data indicated that the adsorption process of PACA nanofibrils for Hg(II) achieved equilibrium within 2 h following a pseudo-second-order rate equation. The adsorption mechanism of PACA nanofibrils for Hg(II) was investigated by Fourier transform-infrared (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS) analyses. The adsorption isotherm of Hg(II) fitted well the Langmuir model, exhibiting superb adsorption capacity of 3.846 mmol of metal per gram of adsorbent. Lastly, we found out that the as-synthesized PACA nanofibrils are efficient in Hg(II) removal from real wastewater. Furthermore, five consecutive adsorption-desorption cycles demonstrated that the PACA nanofibrils were suitable for repeated use without considerable changes in the adsorption capacity.

Funder

Analysis and Testing Foundation of Kunming University of Science and Technology

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3