Shifts in Community Vegetative Organs and Their Dissimilar Trade-Off Patterns in a Tropical Coastal Secondary Forest, Hainan Island, Southern China

Author:

Yaseen Muhammad,Long Wenxing,Khalid FarhanORCID,Bahadur SarajORCID,Noushahi Hamza ArmghanORCID

Abstract

The ecology of functional features highlights the importance of the leaf economic spectrum (LES) in understanding plant trade-offs between conservative and commercial resource use. However, it is still unclear whether changes in the plant attributes of various vegetative organs can be altered and whether the plant economic spectrum (PES) is categorized by multiple vegetative organs. We investigated a total of 12 functional features of 174 woody tree species, with leaf and stem attributes, on Hainan Island. We used principal component analysis (PCA) to analyze the changes in attributes and connections to understand how the plant trade-offs differ. We detected that stem organic matter (SOM) and stem organic carbon (SOC) contributed most to the first principal component, followed by leaf organic matter (LOM) and leaf organic carbon (LOC). Using Spearman correlation analysis, we determined that leaf total nitrogen (LTN) and specific leaf area (SLA), LTN and leaf total phosphorus (LTP), and finally stem total nitrogen (STN) and stem total phosphorus (STP) were positively significantly correlated. These significant variations in the traits of nutrients are regulated, while the morphological traits of aboveground vegetative organs are diverse. The coexistence of species and community assembly can increase our knowledge on the tropical coastal secondary forests. Furthermore, our outcomes can help us to better understand the restoration of habitats and green infrastructure design, suggesting that selecting different species across multiple trait axes can help ensure functionality at the maximum level.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3