Effect of LP-EGR on the Emission Characteristics of GDI Engine

Author:

Lou Diming,Lou Guokang,Wang Bo,Fang LiangORCID,Zhang Yunhua

Abstract

Exhaust gas recirculation (EGR) can improve the fuel economy of gasoline direct-injection (GDI) engines, but at the same time it will have a significant impact on emissions. In this paper, the effects of low-pressure exhaust gas recirculation (LP-EGR) and its rate on the main gaseous and particulate emission characteristic of a GDI engine were investigated. The results showed that the particle size distribution of the GDI engine presented bimodal peaks in nucleation and accumulation mode, and the nucleation mode particles comprised the vast majority of the total particles. The effect of LP-EGR on emissions depended on the engine conditions. At low and medium speed, the particle emissions increased with the increase in the EGR rate, while at high speed, a reduction in the particle emission was observed. When the engine operated in full load condition, an increase in the EGR rate reduced the particle number (PN) concentration significantly, but increased the particle mass (PM) concentration. In terms of the gaseous emission, the EGR could reduce as much as 80% of the NOx emission; however, the total hydrocarbons (THC) emission presented an increased trend, and the maximum increase reached 23.5%. At low and medium loads, the EGR could reduce the CO emission, but at high load, the CO emission worsened with the EGR.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference25 articles.

1. Particulate Matter Emissions from Gasoline Direct Injection Engines: Research Review;Fang;J. Automot. Saf. Energy,2017

2. Particle Number Emissions from a Range of European Vehicles;Braisher,2010

3. Review of formation mechanism and emission characteristics of particulate matter from automotive gasoline engines;Shuai;Trans. CSICE,2016

4. Gasoline engine exhaust gas recirculation – A review

5. Influence of EGR on Emission Characteristics of In-use Gasoline Vehicles;Gao;Small Intern. Combust. Engine Veh. Tech.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3