Particulate Characterization and Lubricating Oil Tribology Investigations of a Gasoline Compression Ignition Engine Using Low Octane Fuels

Author:

Agarwal Avinash Kumar1,Krishnamoorthi M.1

Affiliation:

1. Indian Institute of Technology Kanpur Engine Research Laboratory, Department of Mechanical Engineering, , Kanpur 208016 , India

Abstract

Abstract High compression ratio and lean-burn operation of low-octane gasoline-fueled compression ignition engines lead to significantly higher thermal efficiencies. Hence, it has emerged as a potential technology to propel medium and heavy-duty vehicles. Gasoline compression ignition engines use advanced fuel injection timings and gasoline-like low-octane fuels, and their impact on the lubricating oil tribology and particulate emissions must be experimentally assessed. Hence, this experimental study compares these aspects for the gasoline compression ignition and baseline conventional diesel combustion engines. Extreme heat, moisture, contamination by particulate matter, corrosive gases, dirt, fuel dilution, wear debris, and depleted additives can degrade the lubricating oil, resulting in higher engine wear and eventual failure. The experiments were conducted on a medium-duty diesel engine at varying engine loads and speeds, and the effect of fuel injection timing on particulate emissions was investigated. The engine was operated for 20 hours, and lubricating oil samples drawn at fixed intervals were analyzed for changes in lubricating oil using spectroscopic techniques. Transmission electron microscopy and inductively coupled plasma-mass spectroscopy were used to analyze the soot and trace elements in the lubricating oil. Spray droplet distribution in the cylinder in a non-reactive computational fluid dynamics simulation environment was done to understand the fuel dilution to the lubricating oil. Results indicated that gasoline compression ignition emitted more particulates than baseline diesel combustion. The gasoline compression ignition engine's lubricating oil showed higher soot-in-oil and lower trace elements, ash, and carbon contents than baseline diesel combustion. Fuel dilution to the lubricating oil was observed in the simulations.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3