Study on Inflow Distortion Mechanism and Energy Characteristics in Bidirectional Axial Flow Pumping Station

Author:

Chen Jia,Zhang Huiyan,Li YanjunORCID,Meng Fan,Zheng Yunhao

Abstract

In the present work, unsteady flow solved by the Reynolds time-averaged Navier–Stokes equation was investigated to determine the inflow distortion mechanism and the spatial distribution of hydraulic loss in a bidirectional axial flow pumping station (Case 1) based on the entropy production theory. A laboratory-scale performance experiment was also employed for the accuracy verification of the simulation approach, and an axial flow pump with pipe passages (Case 2) accompanying uniform inflow was utilized for analysis comparison. The results show that the non-uniform inflow causes a noticeable reduction in head and efficiency, as high as 27% and 21%, respectively, and the best efficiency point with uniform inflow shifts to the point with a larger flow rate. The axial velocity of the impeller inlet in Case 2 changes more smoothly along the Span compared with that in Case 1, which further indicates a more uniform inflow at the impeller inlet. The total entropy production (TEP) of each domain in Case 1 is always higher than that in Case 2, and the TEP of the whole domain in Case 1 increased by 18.68%, 30.50%, and 29.67% with flow rates of 0.8Qdes, 1.0Qdes, and 1.2Qdes, respectively, compared with that in Case 2. In the inlet passage, the larger TEPR regions in Case 1 are mainly located in the horn passage, which is far away from the inlet side, and are also distributed in the suction side of impeller blades and guide vanes. Therefore, this work may provide an optimal design reference for pumping stations in practical application.

Funder

Ranking the top of the list for science and technology projects of Yunnan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference30 articles.

1. Fluidic rolling robot using voltage-driven oscillating liquid;Mao;Smart Mater. Struct.,2022

2. Satoh, A., and Katoh, K. An Experimental Study for Clarifying the Mechanism of a Microjet in an Electro-Conjugate Fluid by the 2D PIV Analysis. Proceedings of the International Conference of Fluid Power and Mechatronics.

3. A review of micropumps;Laser;J. Micromech. Microeng.,2004

4. Fluid-structure coupling analysis of impeller in unstable region for a reversible axial-flow pump device;Meng;Adv. Mech. Eng.,2018

5. Correction of pumping station parameters in a one-dimensional hydrodynamic model using the Ensemble Kalman filter;Lei;J. Hydrol.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3