Design and Optimization of High-Pressure Water Jet for Coal Breaking and Punching Nozzle Considering Structural Parameter Interaction

Author:

Chen Lihuan,Cheng Muzheng,Cai Yi,Guo Liwen,Gao Dianrong

Abstract

The technology of increasing coal seam permeability by high-pressure water jet has significant advantages in preventing and controlling gas disasters in low-permeability coal seam. The structural parameters of a nozzle are the key to its jet performance. The majority of the current studies take strike velocity as the evaluation index, and the influence of the interaction between the nozzle’s structural parameters on its jet performance is not fully considered. In practice, strike velocity and strike area will affect gas release in the process of coal breaking and punching. To further optimize the structural parameters of coal breaking and punching nozzle, and improve water jet performance, some crucial parameters such as the contraction angle, outlet divergence angle, and length-to-diameter ratio are selected. Meanwhile, the maximum X-axis velocity and effective Y-axis extension distance are used as evaluation indexes. The effect of each key factor on the water jet performance is analyzed by numerical simulation using the single factor method. The significance and importance effect of each factor and their interaction on the water jet performance are quantitatively analyzed using the orthogonal experiment method. Moreover, three optimal combinations are selected for experimental verification. Results show that with an increase in contraction angle, outlet divergence angle, and length-to-diameter ratio, the maximum X-axis velocity increases initially and decreases thereafter. The Y-direction expansion distance of the jet will be improved significantly with an increase in the outlet divergence angle. Through field experiments, the jet performance of the improved nozzle 3 is the best. After optimization, the coal breaking and punching diameter of the nozzle is increased by 118%, and the punching depth is increased by 17.46%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3