Field Evaluation of Piezoelectric Energy Harvesters on Bridge Structure

Author:

Guo Lukai1,Wang Hao1ORCID,Braley John2,Venkiteela Giri3

Affiliation:

1. Department of Civil and Environmental Engineering, School of Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ 08814, USA

2. Center for Advanced Infrastructure and Transportation, Rutgers, The State University of New Jersey, New Brunswick, NJ 08814, USA

3. Bureau of Research, New Jersey Department of Transportation, Trenton, NJ 08625, USA

Abstract

This study aims to develop and evaluate vibration-based piezoelectric energy harvesters for generating power from a bridge structure. New designs of multiple-degree-of-freedom (DOF) cantilevers were proposed and evaluated in a laboratory and on a full-scale bridge. It was found that all cantilever designs showed potential of generating 35 V voltage outputs under a simple sinusoidal vibration scenario in the laboratory. Field testing results showed that the match between the vibration frequencies of bridge structure and the resonant frequencies of cantilevers significantly affected the voltage output from the piezoelectric energy harvester under moving tire loads. Through adding more DOF on the same cantilever, the voltage attenuation from peaks generated by the cantilever turned to be less significant after each load passing, leading to greater energy outputs in some cases. With adjusting the mass combination in the 3-DOF cantilever design, the voltage output and energy production reached 11.1 V and 58.2 μJ under one single loading pulse, respectively, which was higher than 9.2 V and 14.9 μJ obtained from the best scenario of 1-DOF cantilevers. The study findings indicate the potential of developing multi-band piezoelectric energy harvesters for harvesting energy from bridge vibrations.

Funder

New Jersey Department of Transportation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3