Object Tracking for an Autonomous Unmanned Surface Vehicle

Author:

Lee Min-Fan RickyORCID,Lin Chin-Yi

Abstract

The conventional algorithm used for target recognition and tracking suffers from the uncertainties of the environment, robot/sensors and object, such as variations in illumination and viewpoint, occlusion and seasonal change, etc. This paper proposes a deep-learning based surveillance and reconnaissance system for unmanned surface vehicles by adopting the Siamese network as the main neural network architecture to achieve target tracking. It aims to detect and track suspicious targets. The proposed system perceives the surrounding environment and avoids obstacles while tracking. The proposed system is evaluated with accuracy, precision, recall, P-R curve, and F1 score. The empirical results showed a robust target tracking for the unmanned surface vehicles. The proposed approach contributes to the intelligent management and control required by today’s ships, and also provides a new tracking network architecture for the unmanned surface vehicles.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3