Abstract
The conventional algorithm used for target recognition and tracking suffers from the uncertainties of the environment, robot/sensors and object, such as variations in illumination and viewpoint, occlusion and seasonal change, etc. This paper proposes a deep-learning based surveillance and reconnaissance system for unmanned surface vehicles by adopting the Siamese network as the main neural network architecture to achieve target tracking. It aims to detect and track suspicious targets. The proposed system perceives the surrounding environment and avoids obstacles while tracking. The proposed system is evaluated with accuracy, precision, recall, P-R curve, and F1 score. The empirical results showed a robust target tracking for the unmanned surface vehicles. The proposed approach contributes to the intelligent management and control required by today’s ships, and also provides a new tracking network architecture for the unmanned surface vehicles.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献