Fracture Mechanism Analysis and Design Optimization of a Wheelset Lifting Mechanism Based on Experiments and Simulations

Author:

Zhi PengpengORCID,Wang Zhonglai,Tian Zongrui,Lu Junwen,Wu Jiang,Guo Xinkai,Liu Zhijie

Abstract

In this study, material and dynamic stress experiments are combined with finite element (FE) simulations to reveal the fracture mechanism of the wheelset lifting apparatus, and a structural design optimization scheme based on the double-layer Kriging surrogate model is proposed. The fracture mechanism of the wheelset lifting apparatus is first clarified through the material analysis of macro/micro and dynamic stress tests. Static strength and modal analyses are then performed to perfect the mechanism analysis in terms of structural performance. An efficient, robust, fatigue design optimization method based on the double-layer Kriging surrogate model and improved non-dominated sorting genetic algorithm II (NSGA-II) is finally proposed to improve the original design scheme. For the wheelset lifting mechanism’s fracture, the crack source is found on the transition fillet surface of the lifting lug and lifting ring, where the fracture has the characteristics of two-way, multisource, high-cycle, low-stress fatigue. It is further revealed that the vibration fatigue occurring at the point of maximum stress is the main cause of the fracture. The effectiveness of the proposed design optimization method is validated via comparative analysis.

Funder

Sichuan Science and Technology Program; Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3