The Design and Control of a Footplate-Based Gait Robo-Assisted System for Lower Limb Actuator
Author:
Rahmati Seyed MohammadaliORCID,
Karimi AlirezaORCID
Abstract
Stroke causes disability in the lower-limb symmetry gait pattern in affected patients. The patients would not be able to regain their usual walking ability independently unless they benefit from rehabilitation therapies. Footplate-based gait robo-assisted systems can help patients to conduct effective training/exercising while tracking their progress of recovery and can dramatically reduce the clinical labor costs of physiotherapy. In the sense of simulation and not the design of the mechanical structure, this study aims to perform a combination of dynamic and control simulation of a five degrees-of-freedom footplate-based gait robo-assisted system established according to the Stewart platform structure for use in lower limb rehabilitation of stroke patients. The effectiveness and performance of the proposed mechanism were assessed through a clinical gait pattern of a healthy male individual. The proposed robo-assisted system enables the simulation of the hip and knee flexion/extension as well as the ankle dorsiflexion/plantar flexion of stroke patients to reproduce their typical symmetry gait pattern. The results were interpreted as the dynamic movement characteristics of the right and left thigh, leg, and foot compared to the clinical gait pattern with a mean percentage error of 6.70% to show the effectiveness and accuracy of the developed robo-assisted system for lower limb actuation in the simulation process.
Funder
National Institutes of Health
EyeSight Foundation of Alabama
Research to Prevent Blindness
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献