Abstract
In this study, a robotic fish inspired to carangiform swimmers has been developed. The artifact presents a new transmission system that employs the magnetic field interaction of permanent magnets to ensure waterproofness and prevention from any overload for the structure and the actuating motor. This mechanism converts the rotary motion of the motor into oscillatory motion. Such an oscillating system, along with the wire-driven mechanism of the tail, generates the required traveling wave in the robotic fish. The complete free swimming robotic fish, measuring 179 mm in length with a mass of only 77 g, was able to maintain correct posture and neutral buoyancy in water. Multiple experiments were conducted to test the robotic fish performance. It could swim with a maximal speed of 0.73 body lengths per second (0.13 m/s) at a tail beat frequency of 3.25 Hz and an electric power consumption of 0.67 W. Furthermore, the robotic fish touched the upper bound of the efficient swimming range, expressed by the dimensionless Strouhal number: 0.43 at 1.75 Hz tail beat frequency. The lowest energy to travel 1 meter was 4.73 Joules for the final prototype. Future works will focus on endowing the robot with energy and navigation autonomy, and on testing its potential for real-world applications such as environmental monitoring and animal–robot interaction.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献